AIGC音频工具AI语音识别-音转文

Whisper

Whisper是一个开源的自动语音识别系统,经过68万小时的多语言和多任务监督数据训练

标签:
chatglm
chatgpt
Whisper

Whisper是什么?

Whisper是一个由OpenAI训练并开源的神经网络,它在英语语音识别上接近人类的鲁棒性和准确性。它是一个自动语音识别(ASR)系统,通过从网络收集的680,000小时的多语言和多任务监督数据进行训练。Whisper能够改善对口音、背景噪音和技术语言的鲁棒性,并且能够进行多种语言的转录以及将这些语言翻译成英语。

主要特点:

  • 多语言和多任务监督数据:Whisper的训练数据集庞大且多样化,这有助于提高其在不同口音、背景噪音和技术术语上的鲁棒性。
  • 端到端的Transformer架构:Whisper的架构简单,采用编码器-解码器Transformer模型,输入的音频被分割成30秒的片段,转换为对数Mel频谱图,然后传递给编码器。
  • 特殊标记:解码器训练用于预测相应的文本字幕,其中包含特殊标记,指导单一模型执行语言识别、短语级时间戳、多语言语音转录和英语语音翻译等任务。

主要功能:

  • 语言识别:Whisper能够识别多种语言,并在需要时进行转录或翻译。
  • 转录和翻译:除了转录原始语言的语音,Whisper还能够将非英语音频翻译成英语。
  • 零样本学习:Whisper在没有针对特定数据集进行微调的情况下,能够在多个不同的数据集上展现出更好的零样本性能。

使用示例:

假设你有一个包含不同语言的音频文件,你可以使用Whisper来:

  1. 将音频分割成30秒的片段。
  2. 将每个片段转换为对数Mel频谱图。
  3. 使用Whisper模型进行语音识别,得到文本转录。
  4. 如果需要,还可以将文本从原始语言翻译成英语。

总结:

Whisper是一个强大的多语言自动语音识别系统,它通过使用大规模和多样化的数据集,提高了在复杂环境下的语音识别能力。它的开源特性为开发者和研究人员提供了一个基础,可以在此基础上构建有用的应用程序或进行进一步的语音处理研究。Whisper的主要优势在于其鲁棒性和多语言处理能力,使其成为一个在语音识别领域具有潜力的工具。

    相关导航