一名化学博士发现,自己需要花费一年做的实验研究,Claude 3(Anthropic公司发布的通用大语言模型)仅用两个小时便可给出方案,且比原方案更简洁、成本更低;一名研究量子物理学方向的博士手握一篇还未发表的论文,结果Claude 3仅凭两个提示词,便直接将论文中的算法“发明”了出来……
“当不同学科的科研难题不断被大模型定向‘爆破’,未来,科研还存在吗?”在日前举行的2024第十届WWEC教育者大会·中欧智慧论坛上,中国科学院院士、国际欧亚科学院院士陈润生提出的问题,引起不少人深思。
时下,大语言模型的出现为数据分析带来革命性影响。
计算机不可能出现“顿悟”,但大模型会
人工智能带来的变化是无可比拟的。
不久前,ChatGPT的主要竞争对手之一Claude将语境窗口token(注:为计量大模型输入、输出的基本单位,有翻译为“词元”)数扩展到10万,相当于7.5万个单词,大大超越了GPT-4语境窗口的8192tokens。这意味着,用户可以将高达500页的文档上传到Claude,它可以在1分钟之内理解、消化这些信息,并基于上传的信息回答用户的问题。
“大模型的学习速度比我们想象中快得多。”陈润生指出,大模型带来两大变化:一是突破了自然语言的识别问题,“计算机可以读书了”;二是实现多模态的融合,从原来只会下棋的“专家”变成了“杂家”。
简言之,人工智能已能逐渐吸收人类创作的所有东西,这是大模型当下正在做的事情,而未来,随着大模型成体系、规模化地增长,势必会出现诸如涌现、顿悟、幻觉等三种现象。
“顿悟”是大模型在数据训练量较少的情况下突然学会了其中的规律。“就像小孩学习一样,学一两遍不会,但学到了第五遍一下就会了。这是人脑学习的一种模式,人学到某个时间,突然开窍了。”陈润生进一步解释说,在传统的印象中,计算机不可能出现“顿悟”,但大模型可能会。
此外,“幻觉”与“涌现”是相对应的概念。大模型给出的结果如果是训练中没有提供的,但合乎逻辑且客观存在,那就是“涌现”;“幻觉”则是指大模型出现的错误或“胡说八道”的东西。
“这些现象或许预示,未来,人工智能可能具备超越人脑智能的能力。”但陈润生同时指出,就目前而言,大模型仅能在某些专业领域达到人类的智能水平,尚未达到人类的智慧水平。对于研究人员来说,如何与大模型合作、共生,提升科研效率,也成为值得研究的重要议题。“大模型可以成为科研人员的好助手,比如帮忙整理文献等。但最后如何处置一堆数据,还是离不开人的把关。”
发展大模型,仍要向“人脑”学习
如今,大模型正加快走进人们的生产、生活。
一方面,大模型行业正呈现出蓬勃发展态势。但另一方面,也有不少学者认为,也不能忽视大模型在耗能、伦理对齐等方面存在的明显短板。
据斯坦福人工智能研究所发布的《2023年AI指数报告》显示,GPT-3一次训练的耗电量为1287兆瓦时,大概相当于3000辆特斯拉电动汽车共同开跑、每辆车跑20万英里所耗电量的总和。而拥有约860亿神经元的人脑,功率仅为20瓦。
“有人认为,未来,人工智能领域的竞争实则是能源竞争,但我不这么认为。”作为佐证,陈润生援引了一组照片,分别为新生儿、三月龄幼儿和两岁儿童的脑部影像片。“可以看到,随着知识的快速增长,人脑中枢系统结构悄然变化,神经系统及神经网络的复杂性大大增加。”
“人类的神经网络结构远比目前大模型复杂得多,未来的智能计算还将参考‘人类智能’,也就是模拟人脑的运行机制。”他表示,大模型的发展绝非靠芯片越堆越多来实现,像人脑一般提高认知系统的时空复杂度,或许能进一步提高大模型的智能程度和应用范围。
随着人工智能的蓬勃发展,人类的角色正在发生转变。
“未来的工作环境将要求人们具备更强的创新能力、沟通技巧和跨学科知识背景。”中欧国际工商学院经济学与决策科学教授、中欧AI与管理创新研究中心主任方跃举例谈到,在商业领域,成功的企业将是那些能够有效地结合人工智能与人类智慧的企业。这就要求人类学会与机器协作,而不仅仅将其看作竞争对手。“我们也需要重新思考现有的教育体系和社会结构,培养出更多适合未来社会需求的人才。”