- 第一个方向是开环的步态生成器,即提前规划好每条腿的行走轨迹,然后周期性地输出控制信号以驱动机器人行走起来。这种方式可以让专家根据经验以及实际环境去设计四足机器人的行走方式,但是缺点是往往需要大量的调试时间以及领域内的专家知识。
- 第二个方向是基于模型预测的控制算法(MPC),这类方法也是 MIT 之前开源的主要算法。算法对环境进行建模后,在每个时间步求解优化问题以找到最优的控制信号。这类方法的问题是其效果依赖于环境模型的建模准确度,并且在实际部署过程中需要耗费比较大的算力去求解最优的控制信号。
- 第三个方向是基于学习的控制算法。前面提到的方法都是提前设计好控制器直接部署到机器人上的,并没有体现出机器人自主学习的过程。这个方向的大部分工作是基于机器自主学习,通过收集机器人在环境中的表现数据,调整机器学习模型中的参数,以更好地控制四足机器人完成任务。