人们需要学习什么
过往,我们把孩子当成需要被填满的容器。如果我们能做到用正确的科目或者正确的活动来填满他们,就好比把所有正确的东西都装入了他们的大脑里,他们就可以开步走,向上攀爬了——上好的学校、赚大钱、从事舒适的工作。
罗伯塔·米奇尼克·戈林科夫(RoBERTa Michnick Golinkoff)和凯西·赫什·帕塞克(Kathy Hirsh Pasek)在畅销书《成就辉煌:学习的科学告诉我们如何培养成功的孩子》(Becoming Brilliant: What Science Tells us About RAIsing Successful Children)中指出,所有学生的基础技能——无论他们在高中毕业后选择什么道路——都是6C:合作能力(collaboration)、沟通能力(communication)、知识储备(content)、批判性思维(critical Thinking)、创新能力(creatiViTy)和自信心(confidence)。雇主希望雇用优秀的沟通者、批判性思考者和创新者——简而言之,他们想要的是杰出的人才。但孩子们从成型知识储备为王的教育系统出来后,用人者往往感到失望。
6C是帮助所有儿童更好成长的关键技能,这些技能也将帮助孩子们成为对社区有贡献的成员和良好的公民,因为这能更好地打造一种充实的个人生活。
虽然我们都希望我们的孩子能取得成绩,但每个孩子都不仅仅是他或她的成绩所构成。那些技能只局限在成型知识储备上的人,有时在学校表现出色,但在工作中似乎永远无法取得大的进展。当公司出现新的职位时,会有人想到他们来担任管理者吗(也许他们缺乏协作的能力)?或者当他们的实验室需要开发一种新的方法时,他们有能力朝另一个方向跑吗(也许是由于缺乏创造力)?
透过6C的视角,我们可以更全面地了解我们孩子的优势和劣势。这意味着我们需要不再强调标准化的测试,因为它将学校教育的重点放在了过于狭窄的成型知识储备的技能上,而忽略了发展上述的其他基础技能。我们也需要不再强调培养特定职业的技能,懂得编码、焊接或会计并不是拥有一个成功的几十年职业生涯最重要的东西。所有这些职业技能的半衰期越来越短。这并不是说知道如何编码、焊接或做会计就完全无用,只是这些是锦上添花的职业准备技能,并不是关键的基础技能。在人工智能时代,学生仍然需要有一个基础,以便有效地使用人工智能。孩子可以利用这个基础,来回答更多的问题,解决更多的问题。而只有当父母和教育者关注这六种关键技能的培养时,他们才会成为孩子的变革推动者(change agent )。
重新强调通识教育
《纽约时报》专栏作家大卫·布鲁克斯(David Brooks)在一篇题为《在人工智能时代,主修“为人”》(In the Age of A.I., Major in Being Human)的专栏中,提出了另一份超越人工智能技能的清单,分别是:独特的个人声音、演示技巧、孩童般的创造才能、不寻常的世界观、同理心以及情境意识。
如果你是一个准备在人工智能世界生活的大学生,你需要问自己:哪些课程会给我带来机器无法复制的技能,使我更具有人类特征?你可能想避免任何教你以非个人的、线性的、泛化的方式思考的课程——人工智能将粉碎那样的思考。另一方面,你可能希望倾向于科学或人文方面的课程,这些课程将帮助你发展以下明显的人类技能:
独特的个人声音(A distinct personal voice)
人工智能经常炮制出在政府报告、公司通讯或学术期刊中可以发现的那种没有人情味的官僚文章。你想要培养出与乔治·奥威尔、琼·狄迪恩、汤姆·沃尔夫和詹姆斯·鲍德温一样独特的声音,去上那些你会听到独特观点的课,这样你就可以学着打造自己的声音。
演示技巧(Presentation skills)
上一代信息技术有利于内向的人,而在到处都是新的人工智能的环境中,我们更珍视人与人的关系,更可能有利于外向的人。能够创作和发表一篇很棒的演讲,与观众建立联系,以及组织有趣和富有成效的聚会的能力,似乎是人工智能不会复制的一套技能。
孩童般的创造才能(A childlike talent for creativity)
当你与GPT这样的系统互动一段时间后,你会注意到它可能会从给出平淡无奇的答案转向完全无意义的废话。而儿童天生是创造者。儿童不只是模仿或被动地吸收数据;他们探索,创造新的想法和富有想象力的故事来解释世界。所以在学习中,你需要参加那些能够释放你的创造力、让你有机会锻炼和磨练自己的想象力的课程,无论它们是关于编码还是绘画。
不寻常的世界观(Unusual worldviews)
AI只是一台文本预测机器,善于预测接下来应该出现什么,所以你要真正善于做到不可预测,脱离常规。用来自遥远时代、不寻常的人和不熟悉的地方的世界观储备你的头脑。在这个传统思维受到涡轮驱动的时代,具有逆向思维和独特世界观的人将是有价值的。
同理心(Empathy)
机器思维对于理解人群的行为模式是很好的,但对于理解你面前的独特个体来说,它并不出色。如果你想做到这一点,好的人文学科课程是非常有用的。通过学习文学、戏剧、传记和历史,你可以更理解其他人的思想。
情境意识(Situational Awareness)
拥有这种技能的人,对其所处情况的独特形势会有一种直观的意识,知道什么时候应该遵守规则,什么时候应该打破规则。对事件的走向有一种感觉,一种特殊的敏感性,不一定是有意识的,但知道应该以什么样的速度行动,做出什么样的决定。这种敏感性来自于经验、历史知识、面对不确定性时的谦逊,以及过着反思和有趣的生活。这是一种掌握在身体和大脑中的知识。
归根结底,我们需要重新强调通识教育。正如哈佛大学经济学家戴夫·戴明(Dave Deming)所写的那样:
通识教育培养了宝贵的“软技能”,如解决问题、批判性思维和适应能力。这些技能很难量化,且并不能为高薪的第一份工作打造清晰的路径。但它们在各种职业中具有长期的价值……即使从狭隘的职业角度来看,通识教育也有巨大的价值,因为它建立了一套基础能力,在迅速变化的就业市场中对学生有好处。
这也是我对人工智能时代的希望——它迫使我们更清楚地区分作为有用信息的知识和让人能够更具智慧和发生改变的人文知识。
教育的转变方向在于,帮助学生建立或学习新的人工智能工具,并了解这些工具的所有社会和伦理影响。这将使学生准备好到外面的世界去解决问题,提出基本的伦理和社会质疑,并设想通过使用这些工具,促使一个更公正和公平的世界诞生。